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Abstract
Plant density and canopy cover are key agronomic traits for cotton (Gossypium hir-
sutum L.) and sorghum [Sorghum bicolor (L.) Moench] phenotypic evaluation. The

objective of this study was to evaluate utility of broadband red–green–blue (RGB)

and narrowband green, red, red-edge, and near-infrared spectral data taken by an

unmanned aerial vehicle (UAV), and RGB taken by a digital single-lens reflex cam-

era for assessing the cotton and sorghum stands. Support Vector Machine was used to

analyze UAV images, whereas ImageJ was used for RGB images. Fifteen vegetation

indices (VIs) were evaluated for their accuracy, predictability, and residual yield. All

VIs had Cohen’s k > .65, F score > .63, and User and Producer accuracy of more

than 71 and 69%, respectively. Soil-adjusted vegetation indices (SAVIs) among nar-

rowband VIs and excess green minus excess red (ExG–ExR) among broadband VIs

provided more agreeable estimates of cotton and sorghum density than the remain-

ing VIs with R2 and index of agreement (IoA) up to .79 and .92, respectively. The

estimated canopy cover explained up to 83 and 82% variability in leaf area index

(LAI) of cotton and sorghum, respectively. The ImageJ produced R2 from .79 to .90

and .83 to .86 and IoA .89 to .97 and ∼.91 between estimated and observed cotton

and sorghum density, respectively. ImageJ explained up to 82 and 79% variability in

cotton and sorghum LAI, respectively. Although ImageJ can give close estimates of

crop density and cover, UAV-based narrowband VIs still can provide an agreeable,

reliable, and time-efficient estimate of these attributes.

Abbreviations: CC, cover cropping; CIRE, red-edge chlorophyll index; CT, conventionally tilled; DSLR, digital single-lens reflex camera; EDM, Euclidean

distance map; ExR, excess red; ExG–ExR, excess green minus excess red; IoA, index of agreement; LAI, leaf area index; LTAR, long-term agroecosystem

research; MAE, mean absolute error; MSAVI, modified soil adjusted vegetation index; NC, no-cover cropping; NGDRI, normalized green red difference

index; NIR, near-infrared; NT, no-till; OBIA, object-based image classification; OSAVI, optimized soil adjusted vegetation index; PA, producer accuracy; RE,

red-edge; RE–R, red-edge minus red; RMSE, root mean square error; ROI, region of interest; SEE, standard error of estimate; SVM, support vector machine;

TVI, triangular vegetation index; UA, user accuracy; UAV, unmanned aerial vehicle; VI, vegetation index.
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1 INTRODUCTION

Assessment of crop stand establishment early in the season

may allow us to evaluate planter performance, assess opera-

tor performance, map soil spatial variability, identify biotic

and abiotic stressors, and predict crop yield and economic

return. Estimating green canopy cover and plant density at

early stages is crucial for precision agronomic applications

such as variable-rate fertilization and irrigation (Ferguson &

Rundquist, 2018). Achieving desirable plant density is often

challenging, as management factors such as tillage and surface

cover management, fertilization, irrigation, and weed man-

agement may influence seedling emergence and establish-

ment. Plant density also drives vegetative surface cover or

green cover, as viewed from a nadir position, enabling one

to detect variability in crop growth and monitor physiologi-

cal stressors.

Traditionally, plant density is assessed manually by count-

ing seedlings (Dhakal et al., 2019), which is time consum-

ing and laborious and may not represent large areas with

high variability. Also, manual estimations are subjective, and

visual assessments vary among observers (Duan et al., 2017).

Indirect assessment (e.g., remote sensing or proximal sens-

ing) may overcome these challenges. Unmanned aerial vehi-

cles (UAV) have become more widely used for autonomous

mission planning in precision agriculture (Duan et al., 2017;

Li et al., 2020) as this method is completely nondestructive at

all growth stages (Portz et al., 2012) and can be used under

adverse field conditions with adjustable speeds (Chapman

et al., 2014). Vegetation indices (VIs) calculated from UAV

images demonstrated promising results in ground cover esti-

mation and plant emergence for a variety of row crops (Chu

et al., 2016; Duan et al., 2017; Jin et al., 2017; Koh et al., 2019;

Li et al., 2019; Liu et al., 2017; Zhao et al., 2018).

Many studies rely on VIs as proxies of canopy attributes

based on the broadband red–green–blue (RGB) spectrum

(Koh et al., 2019; Li et al., 2019; Li et al., 2020; Zhao

et al., 2018). A few studies showed narrowband VIs providing

slightly better estimates of crop attributes than broadband VIs

(Thenkabail et al., 2000; Zhao et al., 2007). Broadband- and

narrowband-based VIs were compared for crop phenotyping

using either satellite imagery (Thenkabail et al., 2002) or near-

surface sensing platforms (Broge & Mortensen, 2002; Zhao

et al., 2007), but there is limited information on the predic-

tion of the canopy area and plant density, specifically for grain

sorghum [Sorghum bicolor (L.) Moench] and cotton (Gossyp-
ium hirsutum L.).

High-resolution RGB images from a digital single-lens-

reflex (DSLR) camera have been effectively used for ground

cover estimation by classifying and separating plant pixels

from the background (Baxter et al., 2017; Xiong et al., 2019).

Baxter et al. (2017) and Xiong et al. (2019) used open-source

Core ideas
∙ Utility of unmanned aerial vehicle-based multi-

spectral imagery was compared with ImageJ-based

red–green–blue analysis.

∙ Five vegetation indices in broadband and 10 in nar-

rowband spectra were evaluated.

∙ Soil line narrowband indices improved predictabil-

ity and accuracy of stand assessment.

∙ ImageJ provided a better estimation of plant den-

sity and leaf area index than an unmanned aerial

vehicle-based method.

software ImageJ (https://imagej.net/) for RGB image process-

ing. This method may enable us to validate remote sensing

results, although all methods require multiple comparisons

with ground-truth data such as stand count and leaf area index

(LAI).

Adoption of UAV technology in agricultural production

systems can speed up image acquisition and pre-processing

since these methods integrate robotic operations and machine

vision (Duan et al., 2017). This technology has been lim-

ited by lack of information on appropriate tools and proce-

dures (Czarnecki et al., 2017), and the value and utility of

this tool has not reached growers’ level. Our study pursued

using an open-source vs. commercial imagery processing tool

with intent to provide a detailed approach and investigate reli-

ability of various methods in characterizing plant attributes

in the early vegetative growth stage. Specific objectives were

to (a) compare VIs derived from broadband and narrowband

spectral data in estimating plant density and LAI of cotton

and sorghum, (b) evaluate UAV-based multispectral image

analysis and DSLR-based RGB image analysis for crop stand

assessment, and (c) confirm the usability of selected meth-

ods with datasets obtained from an independently designed

experiment.

2 MATERIALS AND METHODS

2.1 Experimental site

The study consisted of two research areas. One research

area (site long-term agroecosystem research [LTAR], 1.5 ha,

33.442279 oN, –90.885838 oW; 38 m asl) was utilized for the

comparison of management practices, assessment methods,

and VIs, and to define relationships between estimated and

actual values. The second research area (site 21-Gun, 2.7 ha,

33.418012 ˚N, –90.898855 ˚W; 37 m asl) was used to test

https://imagej.net/


DHAKAL ET AL. 3 of 18

validity of the generated relations and selected best models.

These two sites were located 1.6-km apart in Stoneville, MS.

2.2 Experimental design

2.2.1 Evaluation: LTAR site

Twelve treatments, comprising a factorial of three crop rota-

tions (monoculture sorghum [Sorghum bicolor L. Moench],

monoculture cotton [Gossypium hirsutum L.], and cotton–

sorghum rotation) × two cover crop treatments (no cover and

cover [Austrian winter pea, Pisum sativum L.]) × two tillage

systems (tillage and no-tillage), were laid out in a random-

ized complete block design with four replications. Individual

plot sizes were 33.5 × 8 m, with eight 1-m wide crop rows.

Austrian pea was terminated with paraquat (1.1 kg a.i. ha−1)

about 2 wk prior to planting. On 17 May 2019 and 13 May

2020, a 4-m-wide tractor-mounted planter was used to plant

cotton (Phytogen 430 W3FE) and grain sorghum (Pioneer

84P80) (seeding rate 56 and 78 kg ha–1, respectively). Fertil-

izer application, insect control, and preemergence and poste-

mergence herbicide programs were standard for both cotton

and sorghum. Crops were irrigated as needed.

2.2.2 Validation: 21-Gun site

This second study was conducted to test the usefulness of

VIs selected at the first (LTAR) site as there was potential

that those indices could be affected by crop status, surface

characteristics, and UAV’s flight paths. In May 2020, after

winter vegetation was burned down with herbicide, the entire

study area was tilled and precisely leveled, and a new exper-

imental design was installed with 21 plots. Plot dimensions

were 152 m long ×8 m wide (eight 1-m wide rows on raised

seedbeds), and plots were separated by 2-m-wide levees. Cot-

ton cultivar Deltapine 2020 B3XF was planted on 1 June 2020

(113,668 seeds ha–1 to achieve a density of 75,000 plants

ha–1). All 21 plots were used for evaluation purposes since this

was an establishment year, and all plots had the same agro-

nomic management.

2.3 Image acquisition and processing

2.3.1 Unmanned aerial vehicle image
acquisition and processing

Images were acquired using two quadcopter UAVs (DJI Phan-

tom 3 Pro and a DJI Phantom 3 Advanced, DJI Technol-

ogy Co.), each of which was mounted with a portable Parrot

Sequoia multispectral camera (Parrot). The camera used for

imaging had a sensor to capture broadband RGB (14 MP),

and narrowband red (660 nm, ± 40 nm), green (550 nm,

± 40 nm), red-edge (735 nm, ± 10 nm), and near-infrared

(NIR) (790 nm, ± 40 nm) wavelengths, respectively. The sen-

sor automatically corrected brightness and synchronized GPS

positions with UAV. The UAV flights were operated above

cotton and sorghum plots between 10:30 a.m. and 12:00 p.m.

CST as weather permitted, with flight altitude 60 m above

canopy surface. Flight routes were preset using DroneDeploy

(DroneDeploy, Inc.) in 2019 and Pix4DCapture (Pix4D S.A.)

in 2020. Table 1 shows records of UAV image acquisitions for

the two fields.

Of the approximately 500 images captured with flight about

350 images were finally used for further processing. Images

were imported to Pix4DMapper 4.2 (Pix4D S.A.) to gener-

ate RGB orthomosaic in broadband and red, green, red-edge,

and NIR orthomosaics in narrowband spectrum, which were

orthorectified to correct geometric and vignetting distortion.

Orthomosaic images were imported to ArcGIS Pro (ESRI)

for further processing (Figure 1). The visual boundary of each

image was used to draw a shapefile to examine dimension

and area for each plot, and Python script (Python Software

Foundation) was written (Zandbergen, 2013) to focus on areas

of interest. A classification schema was created for plant and

bare surfaces. An initial segmented raster dataset was created

as an input to reference the existing dataset before training the

classifier, and training samples were generated with respect

to the segmented image, corresponding to the classification

schema. More than 20 and 50% pixels were picked to train

the sample for plant and bare surface classes, respectively, to

ensure statistical significance for reliable classification. A ref-

erence dataset was provided to assess accuracy of classified

results.

Spectral and spatial details were provided based on crop

species to be segmented. Minimum segment size was deter-

mined based on actual plant leaf area. Before running samples

in batch, “segmented boundaries” and “number of segments

overlaid on the source images” were evaluated and compared

by dynamically rerunning the segmentation via changing the

parameters. A highly advanced nonparametric machine learn-

ing classifier called support vector machine (SVM) (Vapnik,

2013) was used to train samples.

After classifying images with SVM, results were compared

with reference datasets for accuracy assessment by creating

more than 500 random points. Cohen’s kappa coefficient (k)

(McHugh, 2012) and F score (Sasaki, 2007) were assessed

to analyze accuracy of results. These accuracy ratings ranged

from 0 to 1, with 1 being 100% accurate. Cohen’s k coefficient

can be written as Equation 1 (McHugh, 2012):

𝑘 = 1 −
1 − 𝑝𝑜

𝑝𝑒
(1)
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T A B L E 1 Date, unmanned aerial vehicle (UAV) model, site, and

weather conditions during UAV imagery time

Date UAV Field Weather
12 June 2019 DJI Phantom 3 Advanced LTAR Mostly overcast

12 June 2020 DJI Phantom 3 Pro LTAR Sunny clear

20 June 2020 DJI Phantom 3 Advanced 21-Gun Mostly sunny

Note. LTAR, long-term agroecosystem research.

where po is relative observed agreement between raster

images, and pe is hypothetical probability of agreement. The

confusion matrix obtained from accuracy assessment also

includes F score (or Sorensen–Dice coefficient), which can

be defined as Equation 2 (Sasaki, 2007):

𝐹1 = 2
precision (recall)
precision + recall

(2)

where precision = TP/(TP + FP) and recall = TP/(TP + FN),

TP = true positive or extracted pixel representing plant in the

reference, FP = false positive or extracted pixel represents

plant pixels not in the reference, and FN = false negative or

extracted pixel does not represent true plant pixels.

For a few datasets, errors in classification results were min-

imized by using a “Reclassifier” tool, and changes were ver-

ified with source images. Denser and solid rows of sorghum

caused by overlapping leaves created elongated objects that

were often resistant to filter and rescaling functions. In that

case, the raster dataset was split based on a pixel threshold per

plant and feature attributes of classified segments. A lower

threshold rescaling factor was applied to remove <10-pixel

objects for broadband images and <1 pixel for narrowband

images to filter unidentified objects. Number of pixels per

object and per plant was determined by stratified random sam-

pling. Area of crop and bare surface (m2) were calculated for

each plot. Plant density estimates were computed by sum-

ming all numbers of objects within each plot for each crop

and extrapolated to per hectare basis for comparison. Objects

having pixels more than two times greater than actual num-

ber of pixels per plant were considered outliers and removed

during the regression procedure.

2.3.2 Selection of vegetation indices and
zonal statistics

Input variables for color object identification and segmenta-

tion utilized various VIs based on broadband RGB and nar-

rowband green, red, red-edge, and NIR orthomosaic images

(Table 2). Initially, 50 VIs commonly used by researchers

were generated using map algebra and screened by testing

segmentation accuracy and visualizing false-color compos-

ite. A single plot image was randomly sampled for each crop

to test each VI, and VIs producing more than 50% user and

F I G U R E 1 Diagram showing object-based image classification using support vector machine (SVM) in ArcGIS Pro. Image acquired on 12

June 2019
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T A B L E 2 Common vegetation indices based on broadband red–green–blue (RGB) and narrowband green, red, red-edge, and near-infrared

(NIR) spectrum

Vegetation indices Abbreviation Equation Reference
Broadband

True color RGB – –

Excess green index ExG 2G – R – B Jin et al. (2017); Li et al. (2019);

Zhao et al. (2018)

Excess red index ExR 1.4R – G Jin et al. (2017); Zhao et al. (2018)

Excess green – excess red

index

ExG – ExR 3G – 2.4R – B Jin et al. (2017); Li et al. (2019);

Zhao et al. (2018)

Normalized green – red

difference index

NGRDI (G–R)/(G+R) Gitelson et al. (2002); Zhao et al.

(2018)

Narrowband

Wavelength of red-edge RE – –

Wavelength of near-infrared NIR – –

Red-edge minus red rRE RE – R –

Wide dynamic range

vegetation index

WDRVI [(0.2 × NIR)–R]/[(0.2 × NIR) + R] Gitelson (2004); Xue and Su

(2017)

Triangular vegetation index TVI [(NIR–G) × 120] – [200 × (R – G)]/2 Broge and Leblanc (2000)

Red-edge chlorophyll index CIRE (NIR/RE) – 1 Gitelson and Merzlyak (1994)

Two-band enhanced

vegetation index

EVI2 2.5 × {(NIR–R)/[NIR + (2.4 × R) + 1]} Jiang et al. (2008); Liu et al.

(2012)

Soil adjusted vegetation

index

SAVI [(NIR–R)/(NIR + R + L)] (1 + L), L = 0.90 Huete (1988)

Modified soil adjusted

vegetation index

MSAVI 0.5 ×
{[2(𝑁𝐼𝑅 + 1)] −

√
(2 ×𝑁𝐼𝑅 + 1)2 − [8 × (𝑁𝐼𝑅 −𝑅)]}

Qi et al. (1994)

Optimized soil adjusted

vegetation index

OSAVI (1 + 0.16) (NIR–R)]/(NIR +R + 0.16) Haboudane et al. (2002);

Rondeaux et al. (1996)

Note. R, red; G, green; B, blue; RE, red-edge.

producer accuracies were shortlisted for crop assessment. In

addition to raster algebraic combination, true color compo-

sition of broadband RGB and wavelengths of dual-channel

narrowband red-edge and NIR were also used for image

segmentation. Overall, a total of 15 (5 broadband plus 10 nar-

rowband) VIs were selected from the pool of 50 VIs. The VIs

selected showed significant correlation at α ≤ .05 to canopy

characteristics (Table 2). Zonal pixel values were recorded for

each VIs in each band.

2.3.3 DSLR image acquisition and
processing with ImageJ

Canopy cover images were recorded using a Canon DSLR

with EF 24–105 lens (Canon Inc.) from 1.5 m height. Photos

were taken during the daytime on the same day as the UAV

flights. A 1-m2 PVC quadrat was placed on top of the ridge

of the crop rows, parallel to the ground at three points within

each plot. The camera was mounted on a 3-m long aluminum

monopod to manually adjust for height by tilting and centering

the camera over the quadrat. A remote controller was used to

focus and capture images. A total of 144 images per plot were

collected at each time.

Photographic images were cropped to the shape of a quadrat

to represent a 1-m2 area (Figure 2d and 2e) and imported to

ImageJ (Version 1.38e) in Microsoft Java 1.1.4 platform. All

images were run in a batch using unique macros for each sam-

pling period; with separate batches prepared for cotton and

sorghum and cover and no-cover crop plots (Figure 2d and 2e).

A single reframed image from the batch was initially imported

to determine threshold parameters in macros and adjust hue,

saturation, brightness (HSB) for color thresholding. Binary

grayscale images were created (Otsu thresholding algorithm)

(Figure 2b and 2c), particles were removed (particle remover

plugin) (Figure 2f and 2g), and size and circularity were mod-

ified to remove unwanted pixels. Particle size smaller than

300 pixels were removed with the circularity ranging from

.001 to 1.00 (Figure 2j and 2k). Gaps between pixels and

lost region of interest (ROI) were corrected with “fill holes”
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F I G U R E 2 Schematic presentation of ImageJ data processing, (a) experiment plot, (b, c) hue, saturation, and brightness (HSB) thresholding

platform, (f, g, h, i) segmented seedlings of cotton and sorghum, (j, k, l, m) corrected images after noise removal, (n, o, p, q) binary masked images

after hole filling and dilation, (r, s, t, u) analyzed particles with region of interest (ROI) outlined. Red circle portrayed (1) oversized particles, (2, 3)

lost ROI due to removal of particles, (4, 5, and 6) reappeared noise particles



DHAKAL ET AL. 7 of 18

and “dilate” options (Figure 2p and 2q). Corrected images

were segmented by the Watershed segmentation tool. Cotton

seedlings were in two- to three-leaf stage where top two leaves

were in distinct positions (Figure 2l and 2p). This created two

separate particles for a single plant before the binary image

processing, whereas Euclidian distance map (EDM) segmen-

tation further fragmented the particle into two halves from the

midrib (Figure 2p). Midrib partition did not occur in sorghum

as plant leaf characteristics were different from cotton, so two

sets of macros were used for each crop. Segmented particles

were analyzed for total count, size, and percentage area cov-

ered. Particle analysis process excluded edges of images, only

including particles >1,000 pixels. Excluding edges removed

the weed particle (red circles in Figure 2) from the images.

Cotton produced two to four segments for each plant, so total

number of segments was divided by number of segments per

plant with the highest average probability (P = .76) obtained

from the probability distribution curve. The average number

of segments per cotton plant was three, which was used to cal-

culate the adjusted cotton density in the ROI. For sorghum,

each segment represented a single plant, thus the total count

represented the number of plants m–2.

2.4 Ground data collection

Cotton and sorghum seedlings were counted 1 m row lengths

for all crop rows in each plot on the same day UAV was

deployed in both years. Plant density was calculated as the

number of plants per hectare from the known length and row

spacing. Five plants were randomly sampled in each plot to

determine leaf area. Leaf area was determined by placing crop

leaves on an area meter (LI-3100C, LI-COR, Inc.), and leaf

area index (LAI) was calculated by dividing total leaf area by

ground area.

2.5 Data analysis

Analytical results from ArcGIS Pro and ImageJ and manu-

ally recorded plant density data were exported to Microsoft

Excel for initial data visualization. Plant density data was

right-skewed; thus, assumption of negative binomial distribu-

tion was made for that variable (Stroup, 2015). Plant density

and percentage canopy cover were analyzed in SAS 9.4 (SAS

Institute) using GLIMMIX procedure for comparing treat-

ments within each year. Tillage and cover crop were set as

fixed effects, whereas replication was set as a random effect.

Means were separated using least significant difference (LSD)

test at α = .05. The relationship between actual and estimated

data was analyzed by using PROC REG procedure in SAS.

Pixel values for each band were regressed against crop LAI.

Partial residual plots were analyzed to determine the linearity

of the regression model. Influential outliers observed due to

poor seedling emergence in some of the plots were removed

based on studentized residuals and Cook’s Distance at α = .05

(Cook, 1977). Images from the LTAR site were used to eval-

uate the relationship between observed and estimated values,

whereas data obtained from the 21-Gun site were used to eval-

uate consistency of the selected VIs and ImageJ in relation

to the estimation of plant density and canopy cover in 2020.

Coefficient of determination (R2), root mean square error

(RMSE), mean absolute error (MAE), and index of agree-

ment (IoA) were computed to evaluate VIs and ImageJ perfor-

mance. Both MAE and RMSE are similar measures, however,

Willmott (1982) stressed that reporting both is more appropri-

ate. The relationship between predicted and observed values

was also expressed as an IoA.

3 RESULTS

3.1 Observed plant density and leaf area
index

By design, sorghum had greater plant density than cotton in

both years as the seeding rate was different (Table 3). Cot-

ton emergence was greater in the 1st year (47,875 plants

ha–1) than in the 2nd year (71,000 plants ha–1). Treatments

had no effect on both cotton and sorghum density in 2019

(P > .05). In 2020, cover crop residue suppressed the cotton

emergence, especially at no-till plots, relative to convention-

ally tilled residue-free plots (P < .05). A similar trend was

observed for sorghum in 2020, where conventionally tilled

(CT)–no-cover cropping (NC), that is, CT–NC had a higher

sorghum density than no-till (NT) cover cropping (CC), that

is, NT–CC (P < .05). Tillage and cover crop treatments had

no effect on LAI of cotton and sorghum in 2019 (P > .05).

In 2020, both NC treatment showed greater LAI than CC for

both cotton and sorghum, especially in the no-tillage plots

(P < .05).

3.2 Zonal statistics and accuracy
assessment of multispectral image analysis

Zonal statistics showed greater mean red reflectance in

broadband from the cotton canopy than green and blue pixels

(Figure 3a). Depressions in RGB values mostly occurred in

sorghum plots. The pattern was similar for narrowband green,

red, and red-edge (RE) reflectance (Figure 3b). Narrowband

red, green, and RE wavelengths showed greater sensitivities

with the changes in green cover than NIR. Pixel values for

all broadband red, green, and blue and narrowband green

and red were reduced with an increase in LAI, whereas

RE and NIR had an opposite relationship. Red reflectance
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T A B L E 3 Plant density and leaf area index of cotton and sorghum in 2019 and 2020 at long-term agroecosystem research (LTAR) site,

Stoneville, MS

Plant density Leaf area index
Cotton Sorghum Cotton Sorghum

Treatments 2019 2020 2019 2020 2019 2020 2019 2020
plants ha–1

NT-NC 43,250 85,000a 84,000 84,250 ab .34 .31ab .75 .67b

NT-CC 50,750 48,000c 86,000 76,000 b .35 .22b .76 .55c

CT-NC 48,250 79,000 ab 87,000 98,250 a .37 .35a .84 .83a

CT-CC 49,250 72,000 b 83,500 85,250 ab .36 .26ab .75 .65 b

Tillage (T) ns * ns ns ns * ns **

Cover crop (C) ns * ns *** ns *** ns ***

T × C ns ** ns ns ns ns *** ns

Note. CC, cover crop; CT, conventional tillage; NC, no cover crop; ns, not significant at the α = .05 level; NT, no tillage. Treatment means followed by the same lowercase

letters are not different at α = .05.

*t test significant at α ≤ .05.

**t test significant at α ≤ .01.

***t test significant at α ≤ .001.

F I G U R E 3 Linear relationships between pixel value and measured leaf area index (LAI) for (a) broadband and (b) narrowband spectrum. Data

were averaged across the years and crops

exceeded NIR until the LAI reached .60 or for almost 80% of

the plots at the time of data collection. This indicates dom-

inance of soil and dead cover crop residue reflectance over

greenness.

Segmentation accuracy was assessed for cotton and

sorghum images (Figure 4), providing information on the

degree to which the raster images were oversegmented or

undersegmented. Ideally, a segmented image accurately

resembles the reference surface where both user and producer

accuracy would achieve 100% or 1. Undersegmented images

show high producer accuracy and low user accuracy and

vice-versa. Broadband VIs such as excess red (ExR), excess

green minus excess red (ExG–ExR), and normalized green

red difference index (NGDRI) and narrowband VIs such

as near-infrared (NIR), triangular vegetation index (TVI),

and red-edge minus red (RE–R) produced undersegmented

raster images for cotton. Similarly, ExR and NGDRI among

broadbands and NIR, two-banded enhanced vegetation index

(EVI2), triangular vegetation index (TVI), and RE–R among

narrowband indices produced undersegmented images for

sorghum. The F score combined both user and producer

accuracy, which was >90% for those images with narrowband

indices: red-edge chlorophyll index (CIRE), modified soil

adjusted vegetation index (MSAVI), and RE–R for cotton

and optimized soil adjusted vegetation index (OSAVI) for

sorghum. None of the broadband indices produced more than

90% F score. The kappa value (k) was more than .90 with

EVI2, MSAVI, TVI, and wide dynamic range vegetation
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F I G U R E 4 Accuracy assessment of

segmentation for different vegetation indices

(VIs) for cotton (C) and sorghum (S). Data were

averaged across years, treatments, and

replications. Broadband indices were RGB,

red–green–blue; ExG, excess green; ExR,

excess red; ExG–ExR, excess green minus

excess red; NGRDI, normalized green red

difference index; Narrowband indices were RE,

wavelength of red-edge; NIR, wavelength of

near-infrared; CIRE, red-edge chlorophyll index;

SAVI, soil adjusted vegetation index; OSAVI,

optimized soil adjusted vegetation index; EVI2,

two-band enhanced vegetation index; MSAVI,

modified soil adjusted vegetation index; TVI,

triangular vegetation index; WDRVI, wide

dynamic range vegetation index; RE–R,

red-edge minus red

index (WDRVI) for cotton, and CIRE, MSAVI, and RE–R for

sorghum. Among broadband indices, ExG–ExR showed the

highest k and F score for both cotton and sorghum. Overall,

ExG–ExR was effective among broadband VIs for both

cotton and sorghum object segmentation, whereas MSAVI

was effective for cotton and OSAVI for sorghum among

narrowband VIs.

3.3 Comparison of vegetation indices for
plant density

Performance of each of the VIs was evaluated by comparing

estimated vs. manually counted plant density at the early veg-

etative stage of the crop. In 2019, cotton density was effec-

tively estimated by using narrowband indices with higher

R2 and IoA and lower RMSE and MAE than with broad-

band VIs (Table 4). Among broadband VIs, ExR had the

lowest RMSE, MAE, and the highest IoA, although ExR

overestimated cotton plant density below 50,000 plants ha−1,

but underestimated at dense areas (Figure 5). The ExG–ExR

consistently overestimated plant density. The CIRE, MSAVI,

and RE–R among the narrowband indices produced R2 >.70

and IoA more than .85 (Figure 6). All three VIs slightly

underestimated cotton plant density below 50,000–60,000

plants ha–1 and overestimated density above that plant pop-

ulation range.

The RMSE and MAE estimations increased for most VIs in

2020 for cotton, whereas R2 and IoA shifted within bandwidth

groups as compared to 2019 (Table 4). For cotton, among

broadband indices, true-color RGB showed the greatest R2

and IoA compared with other Vis, but RGB underpredicted

cotton density as compared with the observed density of cot-

ton (Figure 5). In 2020, OSAVI and RE–R were the best-

performing narrowband VIs, with more than .70 and .90 R2

and IoA, respectively. Although OSAVI and RE–R were sta-

tistically more sound than other narrowband VIs, RE–R devi-

ated slightly from the 1:1 line, underestimating cotton density

in dense areas (Figure 6).

Broadband VIs ExR and ExG–ExR described 55% of vari-

ability in sorghum density in 2019 with RMSE and MAE

approximately 10,000 and 8,000 plants ha─1, respectively, and

IoA close to .80 (Table 4). The regression lines for these

indices were closer to the 1:1 line than other VIs (Figure 7).

Among narrowband indices, OSAVI had the highest R2 and

IoA and the lowest RMSE and MAE, whereas CIRE, TVI, and

RE–R were intermediate between OSAVI and the remaining

VIs. Although MSAVI had slightly lower R2 than OSAVI and

TVI, it was more proximate to the 1:1 line than TVI, whereas

TVI overestimated the sorghum density below 85,000 plants

ha−1 (Figure 8).

Estimating sorghum density from broadband VIs appeared

to be ineffective in 2020 (Table 4), where all broadband

VIs highly overestimated sorghum density, especially in

low-density areas (Figure 7). Nevertheless, ExG–ExR was

better among all broadband VIs with relatively higher R2

and lower prediction errors. Narrowband VIs effectively seg-

mented plant pixels from the bare soil and captured up to 70%

variability in sorghum plant density, where OSAVI, MSAVI,

and RE–R performed better than VIs not corrected for soil

reflectance. The RE and WDRVI had lower and more incon-

sistent predictability as compared with the three above men-

tioned VIs. The RE–R, unlike soil adjusted indices, produced

strong agreement between observed and estimated sorghum

density in 2020 (Figure 8).

3.4 Comparison of vegetation indices for
canopy cover

Percentage canopy cover for cotton and sorghum was esti-

mated using VIs in broadband and narrowband spectrum,
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T A B L E 4 Evaluation of vegetation indices (VIs) used to estimate plant density for cotton and sorghum with respect to the observed plant

density in 2019 and 2020. The proportion of variance in predicted values is shown by R2

Cotton Sorghum
Year VIs R2 RMSE MAE IoA R2 RMSE MAE IoA

plants ha–1 plants ha–1

2019 Broadband

RGB .39 9,746 8,352 .75 .44 15,251 13,034 .72

ExG .35 10,588 8,858 .73 .37 28,999 23,934 .47

ExR .42 7,071 6,088 .80 .55 11,024 9,727 .82

ExG–ExR .58 9,733 7,792 .75 .55 10,813 8,464 .81

NGRDI .35 9,767 7,122 .70 .12 16,777 15,548 .56

Narrowband

RE .25 12,678 10,812 .62 .16 17,991 15,506 .58

NIR .67 8,754 7,553 .80 .43 17,915 15,638 .71

CIRE .79 6,876 5,986 .90 .65 8,520 7,533 .88

SAVI .41 13,733 11,942 .70 .49 13,997 11,880 .77

OSAVI .48 14,673 12,084 .69 .73 6,946 6,025 .91

EVI2 .43 16,453 14,816 .67 .35 11,372 10,008 .75

MSAVI .73 7,110 5,904 .88 .50 12,063 10,138 .80

TVI .63 8,568 6,983 .84 .67 7,907 6,623 .87

WDRVI .57 10,953 9,689 .75 .63 22,444 19,982 .63

RE–R .75 8,725 7,324 .85 .66 9,078 7,246 .87

2020 Broadband

RGB .56 16,940 20,574 .76 .17 19,714 23,097 .63

ExG .46 16,119 18,474 .75 .35 16,882 19,227 .72

ExR .36 17,632 19,856 .72 .24 17,606 20,688 .62

ExG–ExR .22 17,469 19,876 .64 .40 16,830 19,073 .74

NGRDI .35 15,566 18,088 .75 .27 18,147 19,839 .68

Narrowband

RE .53 15,398 16,758 .84 .45 14,611 17,334 .74

NIR .63 11,705 13,220 .86 .65 14,979 17,172 .81

CIRE .63 10,180 12,297 .88 .49 14,663 16,385 .79

SAVI .56 13,143 15,178 .82 .48 11,287 13,137 .77

OSAVI .70 9,750 11,033 .91 .71 13,110 15,854 .78

EVI2 .59 12,103 14,022 .83 .52 10,611 13,040 .82

MSAVI .74 12,168 13,780 .90 .64 9,658 10,983 .88

TVI .56 11,901 13,728 .86 .52 13,490 14,766 .83

WDRVI .44 12,710 15,610 .79 .64 11,505 12,816 .87

RE–R .77 9,580 10,610 .92 .61 12,491 13,642 .90

Note. CIRE, red-edge chlorophyll index; ExG, excess green; ExR, excess red; ExG–ExR, excess green minus excess red; EVI2, two-band enhanced vegetation index; IoA,

index of agreement; MAE, mean absolute error; MSAVI, modified soil adjusted vegetation index; NGRDI, normalized green red difference index; NIR, wavelength of

near infrared; OSAVI, optimized soil adjusted vegetation index; RE, wavelength of red-edge; RE–R, red-edge minus red; RGB, red–green–blue; RMSE, root mean square

error; SAVI, soil adjusted vegetation index; TVI, triangular vegetation index; WDRVI, wide dynamic range vegetation index.

and its linear relationship to LAI (Table 5). Crops had

more canopy cover in 2020 than 2019, with slightly greater

variability among the VIs, especially with narrowband

indices. Red-edge tended to have more canopy cover than

others. The WDRVI had an estimate closer to observed

values when averaged across the VIs within the broadband

and narrowband VIs. The R2 relating estimated canopy cover

and LAI indicated greater predictability of ExG–ExR among

broadband indices and MSAVI among narrowband indices

for both crops (Table 5). Standard error of estimate (SEE) was

<4.5 and 3.0% for sorghum and cotton, respectively (data not

shown).
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F I G U R E 5 Relationship between observed and unmanned aerial vehicle (UAV) estimated cotton density in five broadband vegetation indices

in (top) 2019 and (bottom) 2020. Vegetation indices are: RGB, red–green–blue; ExG, excess green; ExR, excess red; ExG–ExR, excess green minus

excess red; NGRDI, normalized green-red difference index

3.5 Performance of ImageJ based DSLR
image analysis

ImageJ-based analysis showed promising predictions for both

cotton and sorghum density and green cover in both years

(Table 6). ImageJ produced RMSE and MAE lower than

UAV methods with much stronger linear relation and IoA

when comparing estimated plant density with observed den-

sity (Table 7). Slopes were equal to 1.0 in both 2019 (P = .07)

and 2020 (P = .21) for both cotton and sorghum (Figure 9).

Canopy cover estimated using ImageJ was linearly related to

LAI (P < .05, Figure 9). Regression showed that sorghum

maintained a similar LAI with largely varied canopy cover

for both years. The SEE of the regressions was lower in cot-

ton than in sorghum. Overall, ImageJ produced lower SEE of

the estimation than that of using the UAV-based multispectral

method.

F I G U R E 7 Relationship between observed and unmanned aerial vehicle (UAV) estimated plant density of sorghum in five broadband

vegetation indices in (top) 2019 and (bottom) 2020. Vegetation indices: RGB, red–green–blue; ExG, excess green; ExR, excess red; ExG–ExR,

excess green minus excess red; NGRDI, normalized green-red difference index
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F I G U R E 6 Relationship between observed and unmanned aerial vehicle (UAV) estimated plant density of cotton in 10 narrowband vegetation

indices in (top two rows) 2019 and (bottom two rows) 2020. Vegetation indices are: RE, wavelength of red-edge; NIR, wavelength of near infrared;

CIRE, red-edge chlorophyll index; SAVI, soil adjusted vegetation index; OSAVI, optimized soil adjusted vegetation index; EVI2, two-band enhanced

vegetation index; MSAVI, modified soil adjusted vegetation index; TVI, triangular vegetation index; WDRVI, wide dynamic range vegetation index;

RE–R, red-edge minus red

3.6 Evaluation of methods using
independent datasets

The 21-Gun site had only cotton for the evaluation. Based

on R2, residual errors (RMSE and MAE), and IoA, ExG–

ExR among the broadband and CIRE, OSAVI, MSAVI, and

RE–R among the narrowband indices were the final can-

didates chosen for evaluation, with an independent set of

data obtained from the 21-Gun study (Table 7). The 21-Gun

site did not have cover crop residue on the surface, and soil

characteristics were slightly different from that of the LTAR

site.

Performance of DSLR image analysis using ImageJ at 21-

Gun was consistent with results obtained at the LTAR site,

with comparable R2 and IoA (Table 7). The SEE using ImageJ

was also reduced to <4,500 plants ha─1. Similarly, ImageJ

estimated green canopy cover captured more than 90% of total

variation within the LAI with low SEE. ImageJ showed the

highest R2 and lowest standard errors for both plant density

and canopy cover prediction, relative to the UAV method.

Selected VIs for UAV image analysis depict improvements

in estimating density and cover (Table 7). Among them, soil

adjusted VIs (MSAVI and OSAVI) led comparisons, provid-

ing confidence in robustness of the UAV method. Cohen’s k of

object-based segmentation was .80, .78, .93, .94, and .85 and

F score was .76, .73, .90, .90, and .92 for ExG–ExR, CIRE,

MSAVI, OSAVI, and RE–R, respectively. Estimated canopy

cover agreed with LAI, except for CIRE (Table 7).
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F I G U R E 8 Relationship between observed and unmanned aerial vehicle (UAV) estimated plant density of sorghum in 10 narrowband

vegetation indices in (top two rows) 2019 and (bottom two rows) 2020. Vegetation indices are: RE, wavelength of red-edge; NIR, wavelength of near

infrared; CIRE, red-edge chlorophyll index; SAVI, soil adjusted vegetation index; OSAVI, optimized soil adjusted vegetation index; EVI2, two-band

enhanced vegetation index; MSAVI, modified soil adjusted vegetation index; TVI, triangular vegetation index; WDRVI, wide dynamic range

vegetation index; RE–R, red-edge minus red

T A B L E 6 Performance of red–green–blue (RGB) image

interpretation using ImageJ in estimating plant density and vegetation

cover of cotton and sorghum in 2019 and 2020

Plant density
Cover vs.
LAI

Crop R2 RMSE MAE IoA R2 SEE
plants ha–1 %

Cotton

2019 .79 7,214 6,040 .89 .82 1.10

2020 .90 6,461 5,617 .97 .78 1.98

Sorghum

2019 .86 7,794 6,947 .91 .79 2.78

2020 .83 8,618 7,659 .91 .78 2.61

Note. IoA, index of agreement; LAI, leaf area index; MAE, mean absolute error;

RMSE, root mean square error; SEE, standard error of estimate.

T A B L E 7 Performance of red–green–blue (RGB) image

interpretation using ImageJ in estimating plant density and vegetation

cover of cotton in 2020 growing season

Plant density
Cover vs.
LAI

Methods R2 RMSE MAE IoA R2 SEE
plants ha–1

ImageJ .93 4,308 3,610 .98 .92 1.16

UAV

ExG–ExR .77 8,059 7,714 .86 .77 2.29

CIRE .64 12,085 13,573 .80 .64 2.64

MSAVI .85 6,185 5,194 .95 .85 1.55

OSAVI .83 7,237 7,038 .93 .83 1.80

RE–R .76 9,264 10,090 .92 .76 2.23

Note. IoA, index of agreement; LAI, leaf area index; MAE, mean absolute error;

RMSE, root mean square error; SEE, standard error of estimate.
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(a)

(b)

F I G U R E 9 Relationship between estimated and observed plant

density and between estimated canopy cover using ImageJ and leaf area

index for cotton and sorghum in 2019 and 2020

4 DISCUSSION

4.1 Effect of crop and surface
characteristics

Cotton pixel segmentation was more accurate than that of

sorghum. Glossy, wide, and bent sorghum leaves tended to

illuminate more than hairy and dark green cotton leaves.

These typical canopy attributes affected object-based seg-

mentation in ArcGIS and binary thresholding in ImageJ. In

ImageJ, cotton and sorghum residue in no-tillage plots pro-

T A B L E 5 Unmanned aerial vehicle (UAV)-derived percentage

vegetation cover of cotton and sorghum and R2 of the linear

relationship between the cover and leaf area index (LAI) for different

vegetation indices (VIs) in 2019 and 2020

Cotton Sorghum
Cover R2 Cover R2

VIs 2019 2020 2019 2020 2019 2020 2019 2020
% %

Broadband

RGB 8 2 .68 .51 20 13 .59 .46

ExG 12 6 .18 .46 22 15 .24 .55

ExR 12 10 .64 .48 22 20 .68 .60

ExG–ExR 12 17 .73 .83 23 21 .76 .73

NGRDI 8 8 .30 .61 23 10 .51 .44

Narrowband

RE 13 27 .43 .61 30 38 .66 .59

NIR 11 20 .62 .70 22 20 .72 .67

CIRE 11 14 .68 .81 20 26 .66 .63

SAVI 11 14 .65 .74 20 21 .65 .71

OSAVI 9 15 .30 .64 28 22 .63 .70

EVI2 10 11 .72 .63 19 20 .62 .58

MSAVI 11 16 .75 .82 22 14 .82 .76

TVI 11 17 .39 .44 27 19 .80 .66

WDRVI 10 16 .66 .55 22 25 .52 .64

RE–R 11 13 .55 .68 21 23 .79 .73

Note. CIRE, red-edge chlorophyll index; EVI2, two-band enhanced vegetation

index; ExG, excess green; ExR, excess red; ExG–ExR, excess green minus excess

red; MSAVI, modified soil adjusted vegetation index; NDGRI, normalized green-

red difference index; NIR, wavelength of near infrared; OSAVI, optimized soil

adjusted vegetation index; RE, wavelength of red-edge; RE–R, red-edge minus

red; RGB, red–green–blue; SAVI, soil adjusted vegetation index; TVI, triangular

vegetation index; WDRVI, wide dynamic range vegetation index.

duced a rough dark background hue, which led to imperfect

binary color thresholding and creation of noise particles and

voids on the leaf surface. Gap filling, dilation, and adjustment

of size and circularity partially filled voids and removed noise

particles including weeds and cover crop residue, but falsely

recognized voids created due to leaf crisscrossing and erro-

neously added pixels to the total feature value. Leaf struc-

ture also affected estimation of plant density, as cumulative

number of segments was not equal to number of plants for

cotton. Two true leaves above the cotyledonary node were

identified as two to four separate segments or plants by ImageJ

due to differences in hue between leaf veins and blade. Such

complexity necessitated use of a probabilistic model to find a

suitable denominator to correct plant density. Although there

were a few cases of merging two or more sorghum plants

into a single clump in high-density areas, overall sorghum

density was in line with total number of particles. Orienta-

tion of crop, soil illumination, solar angle and brightness,
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crop height, camera angle, and color setting could also affect

results (Xiong et al., 2019).

Average pixel value of the same crop from different treat-

ments was significantly different for the same spectral band

(Figure 5), and that justifies the use of color VI. Color VIs

are considered less sensitive to lighting, as they can accen-

tuate a color that may be useful in comparing plant green-

ness (Meyer & Neto, 2008). Among broadband indices, ExG–

ExR had comparable accuracy to the narrowband indices,

relative to ExG, ExR, and NGRDI. Utility of ExG–ExR

for greater accuracy has been demonstrated (Zhang et al.,

2017; Zhao et al., 2018). However, due to low spectral res-

olution, it was challenging to identify and segment plants

from the background (Zhao et al., 2018). Jin et al. (2017)

and Liu et al. (2017) advocated high-resolution multispec-

tral images for improved accuracy under overlapped seedling

conditions.

Soil adjusted VIs showed a significant reduction in noise

across a wide range of vegetation and surface cover, includ-

ing no-cover tilled plots. We obtained more reduction of

first-order soil reflectance at L from 0.50 to 0.90, especially

for no-cover plots due to high buffering of red reflectance

variations, although Huete (1988) proposed using a

soil-adjustment factor L = 0.5 (Table 2). The MSAVI

has self-adjustable L (Qi et al., 1994) that increased dynamic

range and further reduced soil background effects with

high vegetation signal/soil noise ratio. Thus, we observed

wide coverage of MSAVI from no-cover to cover crop

and no-tillage to tilled plots. Another soil line vegetation

index such as OSAVI (Haboudane et al., 2002; Rondeaux

et al., 1996) also captured green cover and plant den-

sity variability with reduced background reflectance and

enhanced sensitivity to greenness, although it did not provide

a good estimate of cotton density in 2019. The merit of

OSAVI and MSAVI is the nonmandatory use of soil line,

which we believe is an advantage over original SAVI.

Nevertheless, SAVIs that are insensitive to soil reflectance

could be insensitive to variations in green canopy changes

(Haboudane et al., 2002).

Change in red reflectance in relation to bare soil surface and

variations from cover to no-cover surface potentially affected

sensitivities of RE and NIR wavelengths, resulting in poor

estimation of canopy cover and crop density. Sensitivity to

chlorophyll is low for EVI2, but the index was highly respon-

sive to canopy structural variations, including LAI and canopy

architecture (Jiang et al., 2008). TVI also utilized green peak

and NIR, based on chlorophyll absorption minima, making

it highly sensitive for dense canopy (Xing et al., 2019). The

NDVI-derived VIs (CIRE, EVI2, and TVI) can only respond

linearly to NIR reflectance when red reflectance is between

10 and 20% (Gitelson, 2004), but in our study, red reflectance

ranged from 5 to 25% (data not shown) and may account

for inconsistent results in dense sorghum stands and sparser

cotton coverage. Reflectance variation between red and red-

edge spectral region as proposed in this study provided a sur-

prisingly good estimate of crop density and canopy cover.

Red and red-edge had the opposite relationship when LAI

was >0.25, with red-edge reflectance having more scatter

than red (R2 = .46) (Figure 5b). Xie et al. (2018) and Xing

et al. (2019) confirmed that VIs with red-edge had scattered

reflectance when the LAI was >3 and noted that combining

red-edge with red and green reflectance improved chlorophyll

sensitivity and relationship with LAI. Tables 4, 5, and 7 and

Figures 4–8 depict improved accuracy and predictability of

RE–R over the wavelength of RE and NIR for both cotton and

sorghum.

With respect to choosing between broadband and narrow-

band indices, results suggest using soil-adjusted narrowband

VIs to cover surface heterogeneity and a wide range of crop

reflectance. Otherwise, use ExG–ExR if broadband RGB is

the only option. This agrees with others that narrowband VIs

were better for estimating crop attributes than broadband ver-

sions (Elvidge & Chen, 1995; Thenkabail et al., 2000; Zhao

et al., 2007), although some research reported no difference

between narrowband and broadband VIs (Broge & Leblanc,

2001; Broge & Mortensen, 2002).

4.2 Limitation and use of UAV-based
multispectral imagery and ImageJ

One of the major limitations of the quality of the UAV image

analysis was the ground resolution that might affect segmen-

tation accuracy and repeatability (Jin et al., 2017; Liu et al.,

2017; Weber et al., 2006). The RMSE and MAE in our data

could have been significantly reduced if the spatial resolu-

tion was higher. Low spatial resolution of images, especially

at the narrowband spectrum may limit separation of adjacent

seedlings due to progressive loss of detail around the object

and feature values. Nevertheless, narrowband images contain

higher spectral resolution or more bands than the broadband

RGB images of high spatial resolutions (Kwan, 2019), so we

could use more band ratios to detect an object of interest. The

advantage of having narrowband images in our experiment

was demonstrated by high segmentation accuracy of SAVIs.

Limited spectral choices pose challenges in selecting VIs

due to low overall accuracy. For reliable implementation by

land managers, segmentation must yield classification user

accuracy >70% (Weber et al., 2006). Current VIs we used,

fall in that range, but some of them did not maintain agreeable

predictability of crop variables. Compared to UAV images,

ultra-high-resolution DSLR images produced much better

outcomes with ImageJ. However, it may take several hours

to collect images from a quadrat at larger scales (Xiong

et al., 2019). To collect 351 images, it took approximately 12

person-hours.
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5 CONCLUSIONS

ImageJ might be the best platform for image analysis based on

overall accuracy of image classification and power in estimat-

ing cotton and sorghum density and canopy cover. However,

ImageJ required acquisition of large numbers of DSLR images

and intense image preprocessing. The ImageJ data engine was

not sufficient to process multispectral datasets obtained using

remote sensing tools. ArcGIS provided an opportunity to ana-

lyze UAV-based multispectral datasets using 15 broad and

narrowband VIs, which were linearly related to the crop den-

sity and LAI. Among broadband VIs, ExG–ExR classified

objects with more accurate scores and produced the smallest

residual errors in estimating plant density and canopy cover,

except for cotton in 2020. Narrowband VIs were more robust

than broadband and consistently provided closer estimation

across datasets obtained from both LTAR and 21-Gun sites.

Most importantly, VIs related to soil line adjustment, that is,

SAVI, MSAVI, and OSAVI captured the variability in plant

density and LAI greater than wavelength of red-edge and

NIR, TVI, and WDRVI. Interactions between red-edge and

red reflectance (RE–R) also captured a wide range of sur-

face characteristics. The combination of broadband color and

multispectral images could provide a wide range of informa-

tion from the crop canopy, which could be used to effectively

assess cotton and sorghum stand establishment.
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